One-pot reaction for the synthesis of fluorinated β -diketones[†]

Wei-yuan Huang and Yong-ming Wu

Shanghai Institute of Organic Chemistry, Academia Sinica, Shanghai 200032 (China)

(Received September 3, 1991; accepted April 1, 1992)

Abstract

Fluorinated β -diketones have been synthesized in high yield from the one-pot reaction of silyl enol ethers with perfluoroalkyl iodides initiates with Na₂S₂O₄/NaHCO₃, followed by treatment with diethylamine and acid hydrolysis.

Introduction

As a class of useful chelating agents [2–4] and synthetic intermediates [5, 6], the chemistry of β -diketones have been studied extensively [7, 8]. The most commonly used synthetic method for these compounds is the Claisen condensation using a variety of different condensing agents such as sodium alkoxide [8, 9], sodium amide [10], sodium hydride [11], Grignard reagents [12], etc. However, because of the strongly basic conditions employed, this method does not give satisfactory yields in the synthesis of fluorinated β -diketones [8, 13, 14]. In the course of our studies of the reaction of silyl enol ethers with perfluoroalkyl iodides we have obtained α -perfluoroalkyl ketones and their dehydrofluorinated products [1]. Applying the method of Portella and Iznaden [15–17] for the conversion of 2-*H*-perfluoro-esters into 2-*H*-perfluoro- β -keto esters, we have developed a simple one-pot reaction for the synthesis of fluorinated β -diketones starting from silyl enol ethers and perfluoroalkyl iodides. The results are reported herein.

Results and discussion

The α -perfluoroalkyl ketone (1), obtained from the reaction between a perfluoroalkyl iodide and the corresponding silyl enol ether [1], when treated with a secondary amine in methylene chloride followed by acid hydrolysis gave the β -diketone (2) in excellent yield.

 $\begin{array}{ccc} Cl(CF_2)_6CH_2COBu^t \longrightarrow Cl(CF_2)_5COCH_2COBu^t \\ (1) & (\mathbf{2bd}) \end{array}$

[†]Studies on the reactions of silyl enol ether with perfluoro-organic compounds. II. For part I, see ref. 1(b).

Tandem reactions of the silyl enol ether 3, first with perfluoroalkyl iodide 4 in the presence of $Na_2S_2O_4$ and $NaHCO_3$, followed by treatment of the resulting product with a secondary amine directly followed by acidic hydrolysis with dilute aqueous mineral acid, gave the expected β -diketone in a onepot synthesis in high vield. The various β -diketones thus synthesized may be summarized by the following equation.

 $\begin{array}{c} \text{OTMS} \\ + X(CF_2)_n I \xrightarrow{1. \text{Na}_2\text{S}_2\text{O}_4/\text{Na}\text{HCO}_3} \\ \text{R} \\ \text{R} \\ 3. \text{aq. HCl} \end{array} X(CF_2)_{n-1}COCH_2COR$ $(\mathbf{3})$ (4) $(\mathbf{2})$ $a: \mathbf{R} = \mathbf{M}\mathbf{e}$ $c: \mathbf{X} = \mathbf{C}\mathbf{l}, n = 4$ ac-ag $b: \mathbf{R} = \mathbf{Bu}^{\mathbf{t}}$ $d: \mathbf{X} = \mathbf{Cl}, n = 6$ bc-bge: X = Cl. n = 8f: X = F, n = 6g: X = F, n = 8

Scheme 1.

It was found that different aliphatic secondary amines gave similar results. for example the tandem reaction between silvl enol ether **3b** with perfluoroalkyl iodide (4d) using diethyl amine or piperidine gave the β -diketone 2bd in 87% or 85% yield, respectively.

When equimolar amounts of β -perfluoroalkyl ketone (1) and the secondary amine were allowed to react, the product was the α , β -unsaturated fluorinated ketone 5. However, if 1 was reacted with excess secondary amine (3 mol), then the immediate product was the β -aminofluorinated enone 6 which could undergo acidic hydrolysis.

All new compounds were characterized through their elemental analyses, IR, ¹H NMR, ¹⁹F NMR and MS spectra.

Experimental

¹H NMR spectra were recorded on a Varian XL-200 (200 MHz) or Varian EM-360A (60 MHz) spectrometer. TMS was used as the external standard. ¹⁹F NMR spectra were recorded on a Varian EM-360 (56.4 MHz) spectrometer. Chemical shifts in ppm were positive upfield using TFA as the external standard. IR spectra were recorded on a Carl Zeiss Specord 75 IR or a Schimadzu IR-440 spectrometer. MS were recorded on a Finnigan-4021 instrument. Silyl enol ethers were prepared by the usual method [18].

General procedure for the synthesis of fluorinated β -diketones (2) From silyl enol ether (3)

Into a 50 ml round-bottomed flask fitted with a condenser and a magnetic stirrer, the reactants were added in the following order: 5.5 mmol silvl enol ether, 5 mmol perfluoroalkyl iodide, 6 mmol sodium dithionite, 6 mmol sodium bicarbonate, 10 ml MeCN and 1 ml H_2O . The mixture was stirred at 40 °C and the progress of the reaction was monitored using ¹⁹F NMR spectroscopy until the chemical shift corresponding to ICF_2 – disappeared. Then 20 mmol Et₂NH was added to the mixture which was stirred at room temperature for another 2 h. Solid was removed by filtration, 10 ml 4 N aqueous HCl solution was added to the filtrate and the resulting mixture stirred for 0.5 h at room temperature. The organic layer was separated and the aqueous layer was extracted with ether $(3 \times 20 \text{ ml})$. The combined organic layer was washed successively with saturated aqueous NaHCO3 solution $(1 \times 30 \text{ ml})$ and saturated aqueous NaCl solution (30 ml) and dried over $MgSO_4$. After removal of the solvent under reduced pressure, the residue was purified by chromatography on a silica gel column with petroleum ether as eluent.

2ac (1 g, 74% yield): Analysis: Found: C, 31.05; H, 1.78; F, 42.37; Cl, 13.13%. $C_7H_5O_2F_6Cl$ requires: C, 31.08; H, 1.86; F, 42.13; Cl, 13.10%. ¹H NMR CCl₄ δ : 14 (1H, s, O-H···O=C); 5.73 (1H, s, H-C=); 2.0 (3H, s, Me) ppm. ¹⁹F NMR CCl₄ δ : -9 (2F, t, ClCF₂-); 45-46 (4F, m, 2CF₂) ppm. IR (cm⁻¹) 1600; 1180; 1130. MS m/z 271 (M⁺); 272 (M+1); 235 (M-Cl); 86, 43 (Me-C=O).

2ad (1.5 g, 81% yield): Analysis: Found: C, 28.90; H, 1.28; F, 51.54; Cl, 9.80%. $C_9H_5O_2F_{10}Cl$ requires: C, 29.17; H, 1.36; F, 51.27; Cl, 9.57. ¹H NMR CCl₄ δ : 14 (1H, s, O-H···O=C); 5.78 (1H, s, H-C=); 1.98 (3H, s, Me) ppm. ¹⁹F NMR CCl₄ δ : -8.7 (2F, t, ClCF₂-); 44.5, 46 (8F, m, 4CF₂) ppm. IR (cm⁻¹): 1600; 1420; 1200; 1140. MS m/z: 371 (M⁺); 86, 43 (Me-C=O).

2ae (2.0 g 85% yield): Analysis: Found: C, 27.98; H, 0.98: F, 57.01; C, 17.52%. $C_{11}H_5O_2F_{14}Cl$ requires: C, 28.08; H, 1.07; F, 56.52; Cl, 7.53%. ¹H NMR CCl₄ δ : 14 (1H, s, O-H···O=C); 6.1 (1H, s, H-C=); 1.1 (3H, s, Me) ppm. ¹⁹F NMR CCl₄ δ : -9 (2F, t, ClCF₂-); 44, 45, 45,7 (12F, m, 6CF₂) ppm. IR (cm⁻¹): 1600; 1200; 1140. MS m/z: 471 (M⁺); 86, 43 (Me-C=O). **2af** (1.4 g, 84% yield): Analysis: Found: C, 30.40; H, 1.37; F, 60.21%. C₉H₅O₂F₁₁ requires: C, 30.53; H, 1.42; F, 59.01%. ¹H NMR CCl₄ δ : 14 (1H, s, O-H···O=C); 5.9 (1H, s, H-C=); 1.1 (3H, s, Me) ppm. ¹⁹F NMR CCl₄ δ : 4.7 (3F, t, CF₃-); 50 (2F, m, CF₃-CF₂-) 45, 46.5 (6F, m, 3CF₂) ppm. IR (cm⁻¹) 1600; 1240; 1200; 1140. MS m/z: 354 (M⁺); 86, 43 (Me-C=O).

2ag (2.0 g, 88% yield): Analysis: Found: C, 28.89; H, 1.07; F, 62.20%. C₁₁H₅O₂F₁₅ requires: C, 29.09; H, 1.11; F, 62.75%. ¹H NMR CCl₄ δ : 14 (1H, s, O-H···O=C); 5.8 (1H, s, H-C=); 1.0 (3H, s, Me) ppm. ¹⁹F NMR CCl₄ δ : 5 (3F, t, CF₃); 50 (2F, m, CF₃-CF₂-); 45-46 (10F, m, 5CF₂) ppm. IR (cm⁻¹) 1600; 1240; 1200; 1140. MS m/z 454 (M⁺); 86, 43 (Me-C=O).

2bc (1.4 g, 90% yield): Analysis: Found: C, 37.96; H, 3.37; F, 36.30. Cl, 11.33%. $C_{10}H_{11}O_2Cl$ requires: C, 38.42; H, 3.55; F, 36.46; Cl, 11.34%. ¹H NMR CCl₄ δ : 14.1 (1H, s, O-H···O=C); 5.7 (1H, s, H-C=); 0.9 (9H, s, Bu^t) ppm. ¹⁹F NMR CCl₄ δ : -9.5 (2F, t, ClCF₂-); 43.2-44 (4F, m, 2CF₂) ppm. IR (cm⁻¹) 2950; 1600; 1360; 1200; 1140. MS m/z 313 (M⁺); 127 (Bu^t-CO-CH₂-CO); 85 (Bu^t-C=O); 57(Bu^t).

2bd (1.8 g, 87% yield): Analysis; Found: C, 34.7; H, 2.6; F, 46.4; Cl, 8.7%. $C_{12}H_{11}O_2F_{10}Cl$ requires: C, 34.9; H, 2.7; F, 46.0; Cl, 8.6%. ¹H NMR CCl₄ δ : 14.2 (1H, s, O-H···O=C); 6.0 (1H, s, H-C=); 0.8 (9H, s, Bu^t) ppm. ¹⁹F NMR CCl₄ δ : -9 (2F, t, ClCF₂-); 44, 46 (8F, m, 4CF₂) ppm. IR (cm⁻¹) 2900; 1600; 1360; 1200; 1140. MS m/z 413 (M⁺); 414 (M+1); 127, 85, 57.

2be (2.2 g, 86% yield): Analysis: Found: C, 32.5; H, 2.0; F, 5.21; Cl, 6.8%. $C_{14}H_{11}O_2F_{14}Cl$ requires: C, 32.8; H, 2.3; F, 51.9; Cl, 6.9%. ¹H NMR CCl₄ δ : 14.1 (1H, s, O-H···O=C); 6.0 (1H, s, H-C=); 0.8 (9H, s, Bu^t) ppm. ¹⁹F NMR CCl₄ δ : -9 (2F, t, ClCF₂); 44, 45, 46 (12F, m, 6CF₂) ppm. IR (cm⁻¹) 2920; 1600; 1380; 1200; 1140. MS m/z: 513 (M⁺); 127, 85, 57.

2bf (1.6 g, (81% yield): Analysis: Found: C, 36.2; H, 2.6; F, 52.4%. $C_{12}H_{11}O_2F_{11}$ requires: C, 36.4; H, 2.8; F, 52.75%. ¹H NMR CCl₄ δ : 14.2 (1H, s, O-H···O=C); 6.0 (1H, s, H-C=); 0.9 (9H, s, Bu^t) ppm. ¹⁹F NMR CCl₄ δ : 5 (3F, t, CF₃-); 50 (2F, m); 44, 46 (6F, m, 3CF₂) ppm. IR (cm⁻¹) 2900; 1600; 1240; 1200; 1140. MS m/z: 397 (M⁺); 127, 85, 57.

2bg (2.1 g, 83% yield): Analysis: Found: C, 33.95; H, 2.29; F, 57.71%. C₁₄H₁₁O₂F₁₅ requires; C, 33.95; H, 2.23; F, 57.43%. ¹H NMR CCl₄ δ : 14.3 (1H, s, O-H···O=C); 6.0 (1H, s, H-C=); 0.9 (9H, s, Bu^t) ppm. ¹⁹F NMR CCl₄ δ : 5.2 (3F, t, CF₃-); 51 (2F, m, CF₃-CF₂-); 45, 46 (10F, m, 5CF₂) ppm. IR (cm⁻¹): 2900; 1600; 1240; 1200; 1140. MS m/z 497 (M⁺); 127, 85, 57.

From α -perfluoroalkyl ketones

A mixture of α -perfluoroalkyl ketone (3 mmol) and diethylamine (10 mmol) in 5 ml dichloromethane was stirred at room temperature for 2 h. Then 4 N aqueous HCl solution (5 ml) was added and the stirring continued at r.t. for another 0.5 h. Addition of 5 ml H₂O to the mixture, followed by the usual work-up gave the expected β -diketones.

Preparation of 6

Into a 25 ml round-bottomed flask fitted with a condenser and a magnetic stirrer, the reactants were added in the following order: 0.52 g **3b** (3 mmol), 1.16 g **4d** (2.5 mmol), 0.8 g NaHCO₃, 0.8 g Na₂S₂O₄, 5 ml MeCN and 0.5 ml H₂O. The mixture was stirred at 40 °C, the progress of the reaction being monitored by ¹⁹F NMR spectroscopy until the peak corresponding to ICF₂- disappeared (c. 1 h). Then diethylamine (1.2 ml) was added, the mixture stirred at r.t. for 2 h and worked-up in the usual way. The crude product was purified by chromatography on a silica gel column with petroleum ether as the eluent to give **6** (1.05 g, 90% yield). Analysis: Found: C, 40.83; H, 4.12; N, 2.87; F, 41.01; Cl, 7.47%. C₁₆H₂₀ONF₁₀Cl requires: C, 41.08; H, 4.31; N, 2.99; F, 41.08; Cl, 7.58%. ¹H NMR CCl₄ δ : 5.85 (1H, H–C=); 2.9 (6H, q, CH₃-CH₂-); 0.95 (13H, s, m) ppm. ¹⁹F NMR CCl₄ δ : -9 (2F, t, ClCF₂-); 31 (2F, t, CF₂-C=); 44, 46 (6F, t, 3CF₂) ppm. IR (cm⁻¹) 2920; 1680; 1200; 1140. MS m/z 468 (M⁺); 469 (M+1); 411 (M-Bu^t); 57 (Bu^t).

References

- 1 (a) W. Y. Huang and L. Q. Zhang, *Youji Huaxue*, 9 (1989) 38; (b) W. Y. Huang, Y. M. Wu and W. Z. Ge, *Chin. J. Chem.*, 9 (1991) 528.
- 2 W. Y. Huang and L. Q. Zhang, Acta Chimica Sinica, 45 (1987) 324; ibid 43 (1985) 173.
- 3 A. E. Pedler, R. C. Smith and J. C. Tatlow, J. Fluorine Chem., 1 (1971/1972) 433.
- 4 K. C. Joshi, A. K. Sharma and B. S. Joshi, J. Fluorine Chem., 47 (1990) 1.
- 5 M. Lipp, F. Dallacke and S. Munner, Justus Liebigs Ann. Chem., 618 (1958) 110.
- 6 (a) Y. Kobayashi, I. Kumadaki, A. Ohsawa, S. Murakami and T. Nakano, *Chem. Pharm. Bull.*, 26 (1978) 1247; (b) H. Ogoshi, M. Homma, K. Yokota, H. Toi and Y. Anyama, *Tetrahedron Lett.*, 24 (1983) 929.
- 7 P. Mushak, M. T. Glern and J. Savory, Fluorine Chem. Rev., 6 (1973) 43.
- 8 A. F. Cockerill, G. L. O. Davies, R. C. Harden and D. M. Rackham, *Chem. Rev.*, 73 (1973) 551.
- 9 W. G. Scribener, B. H. Smith, R. W. Mosher and R. E. Sievers, J. Org. Chem., 35 (1970) 1696.
- 10 K. C. Joshi and B. S. Joshi, J. Fluorine Chem., 32 (1986) 229.
- 11 E. D. Bergmann, S. Cohen and I. Shohak, J. Chem. Soc., (1961) 3278.
- 12 W. Y. Huang and L. Q. Zhang, Acta Chimica Sinica, 44 (1986) 642.
- 13 A. E. Tipping and V. J. Davis, Fluorocarbon and Related Chemistry, Vol. 3, Chem. Soc., London, 1976, p. 141.
- 14 E. Bergan, J. Org. Chem., 23 (1958) 476.
- 15 M. Iznaden and C. Portella, J. Fluorine Chem., 43 (1989) 105.
- 16 M. Iznaden and C. Portella, Tetrahedron Lett., 29 (1988) 3683.
- 17 C. Portella and M. Iznaden, Tetrahedron Lett., 28 (1987) 1655.
- 18 (a) H. O. House, L. J. Czuba, M. Gall and H. D. Olmstead, J. Org. Chem., 34 (1969) 2324; (b) P. Cazeau, F. Duboudin, F. Moulines, O. Babot and J. Dunogues, Tetrahedron, 43 (1987) 2075 (part I); 2089 (part II).